Fatty Acid Metabolism

1. Fatty acid synthesis
Insulin Effects

figure 1

- **Liver**
 - increased fatty acid synthesis
 - glycolysis, PDH, FA synthesis
 - increased TG synthesis and transport as VLDL

- **Adipose**
 - increased VLDL metabolism
 - lipoprotein lipase
 - increased storage of lipid
 - glycolysis
Overview of Fatty Acid Metabolism: Glucagon/Epinephrine Effects

- Adipose
 - increased TG mobilization
 - hormone-sensitive lipase
- Increased FA oxidation
 - all tissues except CNS and RBC
Fatty Acid Synthesis

figure 3

- **Glycolysis**
 - cytoplasmic

- **PDH**
 - mitochondria

- **FA synthesis**
 - cytoplasmic
 - **Citrate Shuttle**
 - moves AcCo cytoplasm
 - produces 50% NADPH via malic enzyme
 - Pyruvate malate cycle
Fatty Acid Synthesis Pathway

Acetyl CoA Carboxylase

- ‘first reaction’ of fatty acid synthesis
- \(\text{AcCoA} + \text{ATP} + \text{CO}_2 \rightarrow \text{malonyl-CoA} + \text{ADP} + \text{Pi} \)
- malonyl-CoA serves as activated donor of acetyl groups in FA synthesis
Fatty Acid Synthesis Pathway

FA Synthase Complex

- Priming reactions
 - transacetylases
- (1) condensation
- (2) reduction
- (3) dehydration
- (4) reduction
Regulation of FA synthesis:
Acetyl CoA Carboxylase

- **Allosteric regulation**
 - stimulated by citrate
 - feed forward activation
 - inhibited by palmitoyl CoA
 - hi B-oxidation (fasted state)
 - or esterification to TG limiting

- **Inducible enzyme**
 - Induced by insulin
 - Repressed by glucagon
Regulation of FA synthesis:

Acetyl CoA Carboxylase

figure 5

- **Covalent Regulation**
 - **Activation (fed state)**
 - insulin induces protein phosphatase
 - activates ACC
 - **Inactivation (starved state)**
 - glucagon increases cAMP
 - activates protein kinase A
 - inactivates ACC
Lipid Metabolism in Fat Cells: Fed State

- **Insulin**
 - stimulates LPL
 - increased uptake of F from chylomicrons and VLDL
 - stimulates glycolysis
 - increased glycerol phosphate synthesis
 - increases esterification
 - induces HSL-phosphatase
 - inactivates HSL
- net effect: TG storage
Lipid Metabolism in Fat Cells: Starved or Exercising State

- Glucagon, epinephrine
- activates adenylate cyclase
 - increases cAMP
 - activates protein kinase A
 - activates HSL
- net effect: TG mobilization and increased FFA
Oxidation of Fatty Acids

The Carnitine Shuttle

- B-oxidation in mitochondria
- IMM impermeable to FA-CoA
- transport of FA across IMM requires the carnitine shuttle
B-Oxidation

figure 9

- FAD-dependent dehydrogenation
- hydration
- NAD-dependent dehydrogenation
- cleavage
Coordinate Regulation of Fatty Acid Oxidation and Fatty Acid Synthesis by Allosteric Effectors

Feeding
- CAT-1 allosterically inhibited by malonyl-CoA
- ACC allosterically activated by citrate
- net effect: FA synthesis

Starvation
- ACC inhibited by FA-CoA
- no malonyl-CoA to inhibit CAT-1
- net effect: FA oxidation
Hepatic Ketone Body Synthesis

- Occurs during starvation or prolonged exercise
 - result of elevated FFA
 - high HSL activity
 - High FFA exceeds liver energy needs
 - KB are partially oxidized FA
 - 7 kcal/g
Utilization of Ketone Bodies by Extrahepatic Tissues

- When [KB] = 1-3mM, then KB oxidation takes place
 - 3 days starvation [KB]=3mM
 - 3 weeks starvation [KB]=7mM
 - brain succ-CoA-AcAc-CoA transferase induced when [KB]=2-3mM
 - Allows the brain to utilize KB as energy source
 - Markedly reduces
 - glucose needs
 - protein catabolism for gluconeogenesis
Clinical significances of impairment of β-oxidation:
1. acquired and genetic deficiency of carnitine substance.
2. genetic deficiency of one or more of enzymes of pathway. Hypoglycemia, muscle weakness, cardiomyopathy, coma and death
Ketosis: Increased production of ketone bodies (K.Bs) with ketonemia and ketonuria. This may occur in physiologic conditions; prolonged fasting and starvation, and in pathological condition; uncontrolled D M.